A <u>C-F-Ru</u> Interaction in a Complex: Preparation and X-Ray Structure of $[Ru{SC_6F_4(F-2)}(SC_6F_5)_2(PMe_2Ph)_2]$

Rosa Maria Catala,ª Diana Cruz-Garritz,ª Adrian Hills,^b David L. Hughes,^b Raymond L. Richards,^b Plinio Sosa,ª and Hugo Torrens^a

Facultad de Quimica, UNAM, Ciudad Universitaria, 04510 Mexico DF, Mexico
A.R.F.C. Unit of Nitrogen Fixation, University of Sussex, Brighton BN1 9RQ, U.K.

Treatment of $[RuCl_3(PMe_2Ph)_3]$ with Pb(SC₆F₅)₂ in acetone gives $[Ru{SC_6F_4(F-2)}(SC_6F_5)_2(PMe_2Ph)_2]$ whose X-ray structure shows a C-F-Ru interaction.

As part of our programme of investigation of sulphur ligands at metal sites,¹ we have examined the reactions of $[MX_3(PR_3)_3]$ (M = Ru or Os, X = Cl or Br, PR₃ = PMe₂Ph, PEt₂Ph, PMePh₂, or PEtPh₂) with thiolate reagents, in particular [Pb(SC₆F₅)₂].

Treatment of $[MCl_3(PR_3)_3]$ with $[Pb(SC_6F_5)_2]$ in acetone at reflux gives a smooth reaction with precipitation of PbCl₂, and the compounds $[M(SC_6F_5)_3(PR_3)_2]$ have been isolated in high yield as paramagnetic green (M = Ru) or purple (M = Os) crystals.

The crystal structure† of one example of this series,

 $[{\rm Ru}{\rm SC_6F_4(F-2)}({\rm SC_6F_5})_2({\rm PMe_2Ph})_2]$ ($\mu_{\rm eff.} = 1.9 \ \mu_{\rm B}$; e.s.r. rhombic signal, g values ca. 2.13, 2.09, and 2.00 in frozen CH₂Cl₂) has been determined as shown in Figure 1, which includes selected bond distances and angles. The important feature of this structure is the interaction of a 2-fluorine of one SC₆F₅ ligand with the metal to create an S-F chelate ligand,

Figure 1. Structure of $[Ru{SC_6F_4(F-2)}(SC_6F_5)_2(PMe_2Ph)_2]$. Principal bond dimensions (Å and °): Ru–F(42) 2.489(6), Ru–S(3) 2.321(3), Ru–S(4) 2.419(3), Ru–S(5) 2.323(3), Ru–P(1) 2.364(3), Ru–P(2) 2.280(3), C(42)–F(42) 1.349(14); S(4)–Ru–F(42) 76.4(2), S(3)–Ru–F(42) 85.0(1), S(5)–Ru–F(42) 87.0(1), S(4)–Ru–P(2) 94.1(1), P(1)–Ru–F(42) 95.1(2), P(2)–Ru–P(1) 94.4(1).

 $[[]Ru{SC_6F_4(F-2)}(SC_6F_5)_2(PMe_2Ph)_2],$ † Crystal data: i.e. $C_{34}H_{22}F_{15}P_2RuS_3$, M = 974.7, orthorhombic, space group Pbca (No. 61), a = 18.110(4), b = 18.063(3), c = 22.858(8) Å, U = 7477.3 Å³, Z = 8, $D_c = 1.732$ g cm⁻³, F(000) = 3864, $\mu(Mo-K_{\alpha}) = 7.6$ cm⁻¹, $\lambda(Mo-K_{\bar{\alpha}}) = 0.71069$ Å. The crystals are small, very dark green, square prisms. One, ca. $0.10 \times 0.12 \times 0.36$ mm was mounted on a glass fibre and, suspected of being slightly air-sensitive, was coated in epoxy resin. After photographic examination, accurate cell dimensions were refined from the goniometer settings of 25 reflections having θ ca. 10° on an Enraf-Nonius CAD4 diffractometer (using monochromated Mo-radiation). Diffraction intensities were recorded to $\theta_{max} = 20^{\circ}$, beyond which there were few observable reflections. Corrections were made for Lorentz and polarisation effects, and to ensure no negative intensities; no deterioration or absorption corrections were considered necessary. 3473 unique reflections were entered into the SHELX program system7 for structure determination (by the heavy atom method) and refinement (by large-block-matrix least-squares methods). At convergence, R = 0.081, $R_w = 0.054$ for 2664 reflections (with $I > \sigma_I$) weighted $w = \sigma_F^{-2}$. (For the 1807 reflections with $I > 2\sigma_I$, R = 0.044, $R_w = 0.036$). Hydrogen atoms were included in idealised positions (the methyl group H-atoms in staggered arrangements), and their parameters were set to ride on those of their bonded C-atoms. Scattering factors for neutral atoms were used.8 Computer programs, as listed in reference 9, were adapted for, and run on, a VAX-11/750 machine at G.C.R.I., Littlehampton. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

thus achieving six-co-ordination in an approximately octahedral arrangement. The Ru–F distance of 2.489(6) Å [cf. calc. 2.7 Å for F (van der Waals' radius) + Ru (atomic radius)]² implies a moderate bond strength for the interaction, which is to our knowledge the first characterised example of a fluorine attached to carbon interacting with a metal (an 'agostic' C–F).³ Two Ir–X–C (X = Br or I) interactions have been structurally characterised.⁴

A further feature of this structure is that the C_6F_5 groups of S(3) and S(5) are eclipsed about the $S \cdots S$ vector; they are thus aligned with the central chelating ligand to form, as close as possible, a stacked pattern.

Ruthenium-H-C interactions are known in complexes: for example the compound $[RuCl_2(PPh_3)_3]$ completes octahedral co-ordination at the metal by interaction of a 2-hydrogen of a phenyl group.⁵ Treatment of this complex with $[Pb(SC_6F_5)_2]$ gives $[Ru(SC_6F_5)_2(PPh_3)_2]$ which has two such C-H-Ru interactions giving octahedral co-ordination (X-ray structure).⁶

We find that the compounds $[M{SC_6F_4(F-2)}]$ (SC₆F₅)₂(PR₃)₂] have a potentially rich chemistry. For example, they react with CO to give adducts and in the presence of zinc these are reduced to give *trans*-[M(SC₆F₅)₂(CO)₂(PR₃)₂]. These and other products of reactions with small molecules will be described in detail at a later date. We are grateful to CONACYT (Mexico) for financial support.

Received, 13th October 1986; Com. 1459

References

- 1 D. Cruz-Garritz, J. Leal, R. L. Richards, and H. Torrens, *Transition Met. Chem.*, 1983, 8, 127; D. Povey, C. Shortman, and R. L. Richards, *Polyhedron*, 1986, 5, 369 and references therein.
- 2 L. Pauling, 'The Nature of the Chemical Bond,' Cornell University Press, Ithaca, 3rd edn., 1960.
- 3 M. Brookhart and M. L. H. Green, J. Organomet. Chem., 1983, 250, 395.
- 4 M. J. Burk, R. H. Crabtree, and E. M. Holt, *Organometallics*, 1984, **3**, 638.
- 5 S. J. La Placa and J. A. Ibers, Inorg. Chem., 1965, 4, 778.
- 6 A. Hills and D. L. Hughes, unpublished.
- 7 G. M. Sheldrick, SHELX-76 Program for Crystal Structure Determination, University of Cambridge, 1976.
- 8 'International Tables for X-ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4, pp. 99 and 149.
- 9 S. N. Anderson, D. L. Hughes, and R. L. Richards, J. Chem. Soc., Dalton Trans., 1986, 245.